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A FIXED POINT THEOREM FOR
A CLASS OF STAR-SHAPED SETS IN ¢,

BY
R. HAYDON, E. ODELL AND Y. STERNFELD

ABSTRACT

A subset K of ¢, is coordinatewise star-shaped (c.s.s.) if there exists a center
point x € K such that for y € K and z € ¢, if z is coordinatewise between x
and y then z € K. We prove that a weakly compact c.s.s. subset of ¢, has the
fixed point property for nonexpansive mappings and that a fixed point for such a
mapping can be obtained in a constructive manner.

1. Introduction

Let K be a closed subset of a Banach space and let T : K — K be nonexpan-
sive (] Tx — Ty||=|x —y|| for x,y €K). It is still an open problem to give
general conditions on K so that T must have a fixed point. Recently it has been
shown by D. Alspach [1] that T may fail to have a fixed point if K is a convex
weakly compact subset of L,(0, 1). In [3] it was proved that if K is a subset of ¢,
which is the closed convex hull of a weakly convergent sequence then T must
have a fixed point. The proof of this fact was somewhat lengthy and technical.

In this paper we study the fixed point property for a different class of weakly
compact (not necessarily convex) subsets of ¢, which we call coordinatewise
star-shaped sets. For x € ¢, we write x = (x(i)) if x (i) is the i-th coordinate of x.
¢o is the Banach space of all sequences x of reals which converge to 0 with

lx]|=max{|x(i)]: 1= i <}

DEFINITION. A subset K of ¢, is said to be coordinatewise star-shaped (c.s.s.)
if there exists a point x € K (called the center of K) such that for all y € K and
Z € ¢o, if z(i) € conv{x (i), y (i)} for all i, then z € K. Note that conv{a, b} is just
the closed interval between a and b.
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Clearly the property of being c.s.s. is translation invariant, and thus we shall
restrict ourselves to the case where the center point is 0. In this case K is c.s.s. if
and only if foreachy € K and 0= a; =1 (1 = i <) the vector (a:y (i))i-: € K.

Of course, c.s.s. sets may fail to be convex. One such set is the image K, under
the formal identity map of the unit ball of I, (0 <p <1),

K, = {x Eco: 21 [x(D)f = 1} .

Let us mention two other classes of sets closely related to c.s.s. A subset K of a
linear space is called star-shaped with center x if forallye K and 0=¢t=1,
tx + (1—t)y € K. A subset K of a vector lattice X is called solid ify € K, z € X
and |y |= |z | imply z € K. Clearly in ¢, a solid set is c.s.s. with center 0 and a
c.s.s. set is star-shaped. Both converse implications are false.

The main result (section 2) of this paper is that weakly compact c.s.s. sets in ¢,
have the fixed point property for nonexpansive mappings and that a fixed point
of such a map can be obtained constructively. The proof is fairly easy. In order to
explain what we mean by “constructively” we first set some notation and recall
some easy facts,

Let K be a closed star-shaped set (with center 0) in a Banach space and let
T:K — K be nonexpansive. Then for each 0 <t <1 the map (T given by
(tT)x = t(Tx) maps K into K and satisfies |(¢T)x — (¢T)y| = t]x — y| for all
x,y € K. Hence by the Banach contraction principle, ¢T has a unique fixed point
y, in K and in fact y, = lim,_..(tT)"x for any x € K. Since Ty, = (1/t)y,, if for
some sequence I, 1 1, (y.,)n-1 converges (in norm) to y, then Ty = y. However,
(y.,)--: may fail to converge for any ¢, { 1. Such an example is given by the well
known self map T of the closed unit ball of ¢, defined by

Tx = (1_"3‘”,"(1),3‘(2), ot ')'
In this case, y. = (1/1+¢)(t,¢>,¢>,---) and T has no fixed point.

DEerFiNITION.  Let K be a closed star-shaped subset of a Banach space. K is
said to have the effective fixed point property for nonexpansive mappings if for
each such map T : K — K and each sequence (t,)--, increasing to 1, there exists
a subsequence (f;) so that (y.;).-: is norm convergent.

2. The main result

THEOREM 1. Weakly compact, coordinatewise star-shaped subsets of ¢, have
the effective fixed point property for nonexpansive mappings.
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CoOROLLARY. Every weakly compact subset of c, is contained in a setf with the
effective fixed point property for nonexpansive mappings.

The corollary follows immediately from Theorem 1 since every weakly
compact subset K of ¢, is contained in a solid weakly compact set S(K) in c,. It
would be interesting to determine when there is a nonexpansive retract from
S(K) onto K for this would imply K also has the fixed point property. For some
interesting work on nonexpansive retracts see [2]. The rest of this section is
devoted to the proof of Theorem 1.

Let K be a c.s.s. subset of ¢, with center 0. Define an order relation on ¢, by
y<xifforalli=1,2,---,y(i)Econv{0,x(i)}. Thusif x EK, yEcoand y <x
then y € K.

DerFmiTiON. For x € ¢ and r >0 let x or € ¢y be given by

0 it [x()|=r,
(xer)(i)=4 x(@)—r ifx(@i)>r,
x()+r fx@)<—-r
We begin with two very simple observations.

PropoSITION 1. If x,y Eco, r>0 and [|x —y||Sr then yor <x.

PrROOF. We have that for all i, y(i)—r=x@)=y()+r. If y(i)>r then
0<(yer)(i)=y(i)—r=x(i) and if y(i)< —r then 0> (yer)(i)=y(@i)+r=
x(i). 1f]y(i)|=r then(y°r)(i)=0. Thus y <x. O

PROPOSITION 2. Let r and s be nonnegative numbers with 1 <<s <1+ r and let
y (S Co Wlth “y “ = 1 Then

ly =[sy)erll=r/s.

ProoF. Fix a coordinate i and consider the following three cases: (i)
[sy(i)|=r, (ii) sy(i)>r and (iii) sy(i)< —r. In case (i), (sy°r)(i)=0 and so
|y(i)—(sy er)(i)|=|y(@i)| = r/s. In case (ii), (sy °r)(i)}=sy(i)—r and so

Ly ()= (sy o)) =]y = (sy(i)—r)| =|r— (s — Dy()]
=r—(s—-Dy@)=r~(s—Dr/s =r/s.

The third equality holds since s — 1 < r. A similar calculation applies to case (iii).
O

We may assume our weakly compact c.s.s. K with center (0 has diameter
bounded by 1. Let T:K— K be nonexpansive and let # { 1. By the weak
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compactness of K there exists a subsequence of (t) which we still denote by (&)
such that (y,)7-: converges weakly to some element y, € K. We shall eventually
prove that in fact lim,_. ||y, — yo|| = 0. If not, then there exists r > 0 and a further
subsequence which we still call (y,) such that

lim [y, = ol = r.

The remainder of the argument will be to show that this violates the weak
compactness of K.

Let (. )7-0 be a sequence of reals rapidly decreasing to 0 (., = r27*'” will do
nicely). We inductively choose a sequence (i,).-o of positive integers and a
subsequence (t;).-: of (#)i-, so that if y, =y, , then

ty) Hyn=yoll—r|<a. (n=1,2,+"),
()] sa=1t'<l+a. (n=1,2,--),
@A) ye()|<an (Zin0=k=nn=12---),
) [ya(i)=yoi)|<an (1=ZiZip,n=12,--")

are true. Note that by (2) we now have Ty, = s.y. for all n.

Indeed choose i, > 1 so that | yo(i)| < ao for i Z io. Choose 1 so that (1), (2) and
(4) hold for n =1. (Recall that (y,)i-; converges weakly to y, so for each i,
lim . y, (i) = yo(i).) Choose i; > i so that for i Z iy, |yo(i)| < e and | y:(i)| < .
Let t5> t! be such that (1), (2) and (4) hold for n = 2 and then choose i>> i, so
that (3) holds for n = 2. Continue in this manner.

Let Fo={i:1=i<ij}and F,={i:i,-i=i<i,} for n =1,2,---. The vector
y. is “‘essentially supported” on F,UF, and the norm of y, — y, is attained at
some coordinate of F,.

We inductively construct a sequence (X )i-o in K which fails to have a weakly
convergent subsequence. Set

0, lg FO’
(5) Xo = y()lFﬂ i.e. xo(i) =
)’()(i), l E Eh
(6) rg:llxo_}’o“ (n = 172".')7
@) Xen= V (Syeert)  (k=0,1,2,-),
n=1

) rett = max{||xisi— yal, 7r/8} (k=0,1,2,---;n=1,2,--+).
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The “sup” in (7) is taken with respect to the order <. Thus V . w, is defined
only if for each i, sign w, (i) = sign w,, (i) for all n and m and then

sup w, (i), if all w,(i)z0,
Vow, (i) = "
" inf w, (i), if all w, (i) <0.

We check that x; is well defined and x, € K for each k. First note x4 <y, and

s0 xo € K. Assume that x,, X, - - -, x. are all well defined and belong to K and
ri=max{||x; —y.|[,7r/8 (0=j=k; n=12---). Then in particular,
% — y.[|=r% and so || Tx = $aya || = | T ~ Ty | =[x — yu|| = rn. By Proposi-

tion 1, Txi > (Say. o ) for all n. Thus xi.1 = V. (Sayn 0 7n) < Txi is well defined
and x. E K.

The proof of Theorem 1 will be complete if we show (x.) has no weakly
convergent subsequence. Let

© £, = Tr(s. — 1)/8s, > 0.
We shall prove that

(10) [Xcci=yal|=ri—en for all n and k.

Assume for the moment that (10) is true. Fix n=1. Then ri"'=
max {|| xis1 = y ||, 7r/8} = max{r¥ — &, 7r/8}. Since £. is a positive number de-
pending solely upon n, there exists k (n) so that for k = k(n), r.= 7r/8. Choose
jn € F. with [y, = ol = | . (=) = yo)|. Then by (1), |y« Gin) ~ yo(in)| > r — @. and
so by (3), |y ()| = r — an — | yoljn)| > r — 2. > 8r/9. Suppose k = k(n). Then
|l xi = ya || = rk=7r/8 and so | x« (j.)| = 8r/9—7r/8 = r/72. Since the coordinates
(j.) are distinct it follows that (x«) has no weakly convergent subsequence in c,.
Thus it remains only to prove (10).

Fix n and k. By definition ry=7r/8, and by (2), 1<s, <1+ a, <1+7r/8=
1+ ri. Thus by Proposition 2,

(1) {[yn = (Saynor = r¥/s, = ri—(s. — Drifs. <ri—7(s. — D)r/8s, = ri— ¢n.

So to prove (10) it suffices to show
(12) |y (i)~ e S max{ly. () = (saynor) (@), ra—&}  fori=12,---.

Of course, by (11), the “‘max” in (12) is just ry— €., but we choose to state our
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problem in this form for technical reasons. Also, it is actually true that
lyn = il =l yn = (suyn e PRIl

Fix a coordinate i. Now xi.: IF" = (SnYn ©Fn) ]F,. by the definition of x;., and the
fact that |y, (i)| < r/2if i € F,, m # n. Thus (11) implies (12) for the case i € F,..

Suppose i € F,, with 1=m <o, m# n. Then by (1), (3) and (4), |y.(i)|=
[ 90 (1) = yoi)| + | yo(i)| < an + am <2at0, and |y ()] =]y (i) = yoli)| + | yoli)| =
r+ am +a, <r+2a. Hence if x..(i)>0 (the case xi..(i)<0 is handled
similarly),  then X 1(i) = SuYm 0T (i) = Y (i) = T = S (r + 200) = Tr /8 =
(Sm — 7/8)r + 28mao =r/4+3a0. Thus |y.(i)— xni(i)| =20+ r/4+3ae<r/2,
and ri—ge, >7r/8—7(s, — 1)r/8s. >Tr[8—Ta.r /8> r/2.

Lastly suppose i € F,. We shall assume y, (i) = 0, the argument for y, (i) <0
being similar. There are two cases.

Case 1. s.y.(i)=rk
Then (s.y. ° r5)(i) = 0 and we need only show that |y, (i) — xci(i)| = ya (i) or

(13) 0= xi(i)=2y.(i).
Now for n,m = 1, by (4),

[ () = Yo D= yn () = YolD)] + [ yo(i) = Y ()] = @ + @ = @0

Thus y.(i)— o=y (i{)=y.(i)+ as. Since y,(i})=0, y.(i)= —ao for all m
and Smym () Z — smao = —7r/8> —rk. Thus ($.ym °rm){(i)= 0 for all m, whence
x.+1(i)= 0 which proves one half of (13).

Also, for all m

SmYm (1) =S¥ () + Sm0to <2y, (i) + 112 <2y, (i) + r .

Thus (Smym ©7%) (i) = max {0, smym (i) = ru} = 2y, (i). This proves (13).

Case 2. s.ya(i)>rh.

In this case, 0<(S.yn°rs)(i)=xiw(i). For all m, O0=(snymorm)(i)=
max {0, Smym (i) — r&} = max{0, s, (ya (i) + ao) = ri} = ya (i) (since Smy. (i) = ya (i)
+ 5m0= (S — DY (i) + S5m0 <7r/8=rr). Thus (Saynorn)(i) = Xira(i) = ya (i)
and so
[ Yn (i) = Xae1(i)] = Yo (0) = Xasr() = ya (i) = (SuYn o 75) (@) = | yu (i) = (Sayn o 1) (G)]-
Thus (12) holds in this case as well. 0
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