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A FIXED POINT THEOREM FOR 
A CLASS OF STAR-SHAPED SETS IN Co* 

BY 

R. HAYDON, E. ODELL AND Y. STERNFELD 

ABSTRACT 

A subset K of co is coordinatewise star-shaped (c.s.s.) if there exists a center 
point x E K such that for y E K and z E co, if z is coordinatewise between x 
and y then z E K. We prove that a weakly compact c.s.s, subset of co has the 
fixed point property for nonexpansive mappings and that a fixed point for such a 
mapping can be obtained in a constructive manner. 

1. Introduction 

Let  K be  a c losed  subset  of a Banach  space  and  let  T : K ~ K be  n o n e x p a n -  

sive ( I I T x - T y  It<-_tlx- y ll for  x , y  E g ) .  It is still an open  p r o b l e m  to give 

gene ra l  cond i t ions  on K so that  T must  have  a f ixed point .  R e c e n t l y  it has  been  

shown by D. A l s p a c h  [1] that  T may  fail to have  a f ixed po in t  if K is a convex  

weak ly  c o m p a c t  subset  of  L1(0, 1). In [3] it was p r o v e d  tha t  if K is a subse t  of Co 

which is the  c losed  convex  hull  of a weak ly  conve rgen t  s equence  then  T must  

have  a fixed point .  The  p r o o f  of this  fact was s o m e w h a t  l engthy  and  technical .  

In this  p a p e r  we s tudy the  fixed po in t  p r o p e r t y  for a d i f ferent  class of weak ly  

compac t  (not necessar i ly  convex)  subse ts  of Co which we call c o o r d i n a t e w i s e  

s t a r - s h a p e d  sets.  F o r  x ~ Co we wr i te  x = (x(i)) if x(i) is the  i - th  c o o r d i n a t e  of x. 

co is the  B a n a c h  space  of  all s equences  x of rea ls  which  conve rge  to  0 wi th  

IIx II = m a x { I x ( i ) l  : 1 _-< i < oo}. 

DEFINITION. A subse t  K of co is said to  be  coordinatewise star-shaped (c.s.s.) 

if t he re  exists  a po in t  x E K (cal led the  cen te r  of K )  such that  for  all y E K and  

z E Co, if z ( i )  E conv {x (i) ,  y (i)} for  all i, then  z ~ K. No te  that  conv {a, b} is just  

the  c losed  in terva l  be tween  a and  b. 
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Clearly the property of being c.s.s, is translation invariant, and thus we shall 

restrict ourselves to the case where the center point is 0. In this case K is c.s.s, if 

and only if for each y E K and 0 _-< a, _-< 1 (1 _-< i < oo) the vector (a,y (i)),=z E K. 

Of course, c.s.s, sets may fail to be convex. One  such set is the image Kp under 

the formal identity map of the unit ball of lp (0 < p < 1), 

Kp = {x ~ c°: ~ lx(i)tP <- l } 

Let us mention two other classes of sets closely related to c.s.s. A subset K of a 

linear space is called star-shaped with center x if for all y ~ K and 0 _-< t =< 1, 

tx + (1 - t)y E K. A subset K of a vector lattice X is called solid if y ~ K, z E X 

and l y I --> I z r imply z E K. Clearly in co a solid set is c.s.s, with center 0 and a 

c.s.s, set is star-shaped. Both converse implications are false. 

The main result (section 2) of this paper  is that weakly compac t c.s.s, sets in Co 

have the fixed point property for nonexpansive mappings and that a fixed point 

of such a map can be obtained constructively. The proof  is fairly easy. In order to 

explain what we mean by "constructively" we first set some notation and recall 

some easy facts. 

Let K be a closed star-shaped set (with center 0) in a Banach space and let 

T : K ~ K  be nonexpansive. Then for each 0 <  t < 1 the map tT given by 

(tT)x = t(Tx)  maps K into K and satisfies II(tT)x - ( tT)y II--< tllx - y II for all 

x, y E K. Hence by the Banach contraction principle, tT has a unique fixed point 

y, in K and in fact y, = lim,~®(tT)"x for any x E K. Since Ty, = (1/t)y,, if for 

some sequence t, 1̀  1, (y,.)~=~ converges (in norm) to y, then Ty = y. However ,  

(y,,)~=l may fail to converge for any t, 1' 1. Such an example is given by the well 

known self map T of the closed unit ball of Co defined by 

Tx = (1 - I I x  II, x 0 ) ,  x ( 2 ) , . . -  ). 

In this case, y, = (1/1 + t)(t, t 2, t3, . . .  ) and T has no fixed point. 

DEFINmON. Let K be a closed star-shaped subset of a Banach space. K is 

said to have the effective fixed point property for nonexpansive mappings if for 

each such map T : K ~ K and each sequence (t,)~=~ increasing to 1, there exists 

a subsequence ( t ' )  so that (Y,S=z is norm convergent.  

2. The main result 

THEOREM 1. Weakly compact, coordinatewise star-shaped subsets of Co have 
the effective fixed point property for nonexpansive mappings. 
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COROLLARY. Every weakly compact subset of Co is contained in a set with the 

effective fixed point property [or nonexpansive mappings. 

The corollary follows immediately from Theorem 1 since every weakly 

compact  subset K of Co is contained in a solid weakly compact  set S ( K )  in co. It 

would be interesting to determine when there is a nonexpansive retract from 

S ( K )  onto K for this would imply K also has the fixed point property.  For some 

interesting work on nonexpansive retracts see [2]. The rest of this section is 

devoted to the proof of Theorem 1. 

Let K be a c.s.s, subset of co with center 0. Define an order relation on co by 

y < x if for all i = 1 , 2 , - . . , y ( i ) ~  conv{0, x(i)}. Thus if x E K, y E co and y < x  

then y @ K. 

DEFINITION. For x E c 0 a n d  r > 0 1 e t  x o r E c 0 b e g i v e n  by 

l 
O i f lx ( i ) l<-r ,  

( xo r ) ( i )  = x ( i ) - r  i f x ( i ) > r ,  

x ( i ) + r  i f x ( i ) < - r .  

We begin with two very simple observations. 

PROPOSITION 1. I f  X, y E Co, r > 0 and Ilx - y II <= r then y o r < x. 

PROOF. We have that for all i, y ( i ) - r - < x ( i ) - - < _ y ( i ) + r .  If y ( i ) > r  then 

O < ( y o r ) ( i ) = y ( i ) - r < = x ( i )  and if y ( i ) < - r  then 0 > ( y o r ) ( i ) = y ( i ) + r -  

x(i).If ly(i)l_--- r then (y o r ) ( i ) =  0. Thus y < x .  []  

PROPOSITION 2. Let r and s be nonnegative numbers with 1 < s < 1 + r and let 

y E co with [lY II <= 1. Then 

Ily - [ ( s y ) o  rill---- r/s. 

PROOF. Fix a coordinate i and consider the following three cases: (i) 

I s y ( i ) l _ -  < r, (ii) s y ( i ) > r  and (iii) s y ( i ) <  - r .  In case (i), (sy o r ) ( / ) =  0 and so 

l y ( i ) - ( s y  or)(i)f = ] y ( i ) l _ -  < r/s. In case (ii), (sy o r ) ( / ) =  s y ( i ) - r  and so 

} y ( i ) -  (sy o r)(i)t  = ] y ( i ) -  (sy ( i ) -  r)[ = I r - (s - 1)y(i)] 

= r -  ( s -  1)y(i)<= r -  ( s -  1)r/s = r/s. 

The third equality holds since s - 1 < r. A similar calculation applies to case (iii). 
[]  

We may assume our  weakly compact  c.s.s. K with center 0 has diameter  

bounded by 1. Let T : K ~ K  be nonexpansive and let tt 1' 1. By the weak 
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compactness  of K there  exists a subsequence of (tt) which we still deno te  by (tt) 

such that (y,,)7=z converges weakly to some e lement  y0 ~ K. We shall eventual ly 

prove  that in fact l i m , _ =  1[ y,, - yoll = o. If not,  then there  exists r > 0 and a fur ther  

subsequence  which we still call (y,,) such that 

lim I[ Y,,-  Yoll = r. 

The  remainder  of the a rgument  will be to show that this violates the weak 

compactness  of K. 

Let  (a.)7=o be a sequence  of reals rapidly decreasing to 0 (a ,  = r2 -("÷'°) will do 

nicely). We inductively choose a sequence  (i.)7-o of positive integers and a 

subsequence  (t',)~-~ of (tt)L~ so that if y, = y,., then 

(1) IIly. - yol l -  r I <  a .  (n = 1 , 2 , . . - ) ,  

(2) s .=l / t ' ,<l+a.  (n = 1 , 2 , . . . ) ,  

(3) l y k ( i ) l <  a .  (i>=i.,O<=k<-n,n=l,2,'"), 

(4) ly.(i)-yo(i)l<a. (l<=i<-i.-,,n= l,2, ' ' ' )  

are true. No te  that by (2) we now have Ty.  = s,y. for  all n. 

Indeed  choose io > 1 so that I yo(i)l < ao for i _-> io. Choose  t'l so that (1), (2) and 

(4) hold for n = 1. (Recall that (y,,)7=z converges weakly to y0 so for each i, 

l i m ~  y,,(i) = yo(i).) Choose  i~ > io so that for  i _-> i~, I yo(i)l < a ,  and I y,( i) l  < a , .  

Let  t~>  t'~ be such that (1), (2) and (4) hold for n = 2 and then choose i2> i~ so 

that (3) holds for  h = 2. Cont inue  in this manner .  

Let  Fo = {i : 1 -<_ i < io} and F.  = {i : i,_~--- i < i,} for  n = 1 , 2 , . . . .  The  vector  

y. is "essential ly suppor t ed"  on Fo LI F.  and the norm of y. - yo is a t ta ined at 

some coord ina te  of F,. 

We inductively construct  a sequence  (Xk)~=o in K which fails to have a weakly 

convergent  subsequence.  Set 

(5) xo = yolF,, i.e. xo(i) = { O, i~ Fo, 
y0(i), i ~Fo, 

(6) r° = ]lXo- y01[ (n = 1 , 2 , . . . ) ,  

(7) xk~.l= V (s,y,  o r~) 
n = l  

(8) r~, + '=  max{l lxk+,-  y. II, 7r/8} 

(k = 0 , 1 , 2 , . . . ) ,  

( k = O ,  1 , 2 , . . . ; n = l , 2 , ' " ) .  
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The  " s u p "  in (7) is t aken  with respect  to the o rder  < .  Thus  V . w .  is def ined 

only if for  each  i, sign w . ( i ) =  sign w , . ( i )  for  all n and  m and then 

sup w. ( i ) ,  

V w . ( i )  = inf w . ( i ) ,  

if all w. (i) _-> 0, 

if all w . ( i ) < 0 .  

We  check that  xk is well defined and xk E K for each k. First no te  x~, < yo and 

so xo E K. A s s u m e  that  x0, x l , - "  ", xk are all well def ined and  belong to K and 

d.=max{llxj-y, ll,7r/8} (0=<j=<k; n = l , 2 , . - . ) .  Then  in part icular ,  

[[xk - y. I[ -< rk- and so [[ Txk - s.y.  I[ = 1[ TXk -- Ty.  II----< IIx  - y. I1--< r-  By Proposi -  

t ion 1, Txk ~ (s.y. o rk) for  all n. Thus  xk+~ = V .  (s.y.  o rk) < TXk is well def ined 

and Xk+~ @ K. 

The  p roof  of T h e o r e m  1 will be  comple te  if we show (Xk) has no weakly  

convergen t  subsequence .  Let  

(9) e. = 7r ( s .  - 1)/8s. > 0. 

W e  shall p rove  that  

(10) [[xk+,- y. I[ --< rk-- e. for  all n and k. 

Assume  for the m o m e n t  that  (10) is true. Fix n = > l .  Then  rk. +~= 

max{[[x~+,- y. 11,7r/8} = max{rk. - e . , 7 r /8} .  Since e. is a posit ive n u m b e r  de- 

pending  solely upon  n, there  exists k ( n )  so that  for  k >= k ( n ) ,  rk. = 7r /8 .  Choose  

j. E Fo with {[y. - Y,,[I = l Y- (J-) - Y,,)[- Then  by (1), [y. ( j . ) -  yo(j.)[ > r - a .  and 

so by (3), [y . ( j . ) ]  => r -  a .  - lY0( j . ) [  > r -  2a .  > 8r/9 .  Suppose  k >= k ( n ) .  Then  

[Ix~ - Y-II--< rk- = 7r /8  and so Ixk (/'.)[--> 8r /9  - 7 r /8  = r/72.  Since the coord ina tes  

(/'.) are distinct it follows that  (xk) has no weakly  convergen t  subsequence  in co. 

Thus  it r emains  only to p rove  (10). 

Fix n and k. By definition rk.>= 7r /8 ,  and by (2), 1 < s. < 1 + a .  < 1 + 7r /8  <= 

1 + r .  k. Thus  by Proposi t ion  2, 

(11) [[Y. - (s.y.  o r~.)[[ <- r~./s. = r~. - (s .  - 1)r~/s. < rk. - 7(s. - 1)r /8s .  = rk.-- e..  

So to p rove  (10) it suffices to show 

(12) l y . ( i ) - - x k + ~ ( i ) l < = m a x { [ y . ( i ) - - ( s . y ,  o r ~ . ) ( i ) t , r k . - - e . }  for  i = 1 , 2 , - - - .  

Of  course,  by (11), the " m a x "  in (12) is just r~.-  e., but  we choose  to s tate  our  
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p rob lem in this form for  technical reasons. Also, it is actually t rue that 

I lyn - x k + , l [ - - <  I l y -  - (s.yoo r~.)ll . 

Fix a coord ina te  i. Now xk+~ Is. = (s.y, o rk.)Is, by the definition of Xk+l and the 

fact that ]ym (i)1 < r/2 if i ~ iv., m ~ n. Thus  (11) implies (12) for  the case i E F.. 

Suppose  i E F , ,  with 1 -<m < ~ ,  m J n .  Then by (1), (3) and (4), [y.( i) l_-  < 
]y.(i)-yo(i)]+lyo(i)l<a. +a.. <2~o, and ]y,.(i)l<=ly..(i)-yo(i)l+lyo(i)]<= 
r + a , , + e ~ , , < r + 2 a o .  Hence  if xk+~(i)>0 (the case x k + , ( i ) < 0  is handled  

similarly), then x~+~(i)= s , , y , , o r ~ ( i ) =  s m y , , ( i ) - r ~  <=s,,(r + 2 a o ) - 7 r / 8  = 

(s,, - 7/8)r + 2s,,ao <- r/4 + 3ao. Thus  ]yn ( i ) - -  Xk+.(i)l <= 2a0 + r/4 + 3ao < r/2, 

and rk,-  e. > 7r/8 - 7(s, - 1)r/8s, > 7r/8 - 7a , r /8  > r/2. 

Lastly suppose i E Fo. We shall assume y. ( i ) =  > 0, the a rgument  for  y , ( i ) <  0 

being similar. The re  are two cases. 

Case I. s.y. (i)-< r~.. 

Then  (s,y.  o rk,)(i) = 0 and we need only show that [y. (i)  - xk+,(i)] =< y~ (i)  or 

(13) 0 <- xk+~(i) <- 2y. (i). 

Now for  n, m -> 1, by (4), 

I y, ( i ) -  y,. (i)l =< ly~ ( i ) -  yo(i)l + I y o ( i ) -  y,, (i)1 =< an + a,, =< ao. 

Thus  y . ( i ) - a o < = y , , ( i ) < = y . ( i ) + a o .  Since y . ( i ) ~ 0 ,  y , . ( i ) =  > - a o  for all m 

and s,,y,. (i) >= - s,.ao >= - 7r/8 > - r~. Thus (s,,y,, o r~)( i )  >= 0 for  all m, whence  

xk.~(i) >- _ 0 which proves one  half of (13). 

Also, for all m 

s,.y,. (i) =< s,.y. (i) + s,,ao < 2y. (i)  + r/2 < 2y~ (i) + r~. 

Thus  (s,,y,. o r~)( i )  <= max{0, s.,y,. ( i ) -  r~} =< 2y, (i). This proves (13). 

Case 2. s .yn( i )>r~. .  

In this case, O < ( s , y ,  ork.)(i)<=J(k÷,(i). For  all m, O<=(s,.ym°r~)(i)<= 

max{0, stay,. ( i)  - r~} =< max{0, s,. (yn (i) + ao) - r~} --< y, (i) (since s,.yn (i) - y, (i) 

+ Smao = (s,, - 1)y. (i) + s,.ao < 7r/8 < r~). Thus (sny. o r~)(i) <= xk+,(i) <= yn (i) 

and so 
lY-(i) - xk÷l(i)] = y~(i) - xk+~(i) <= yn(i) - (snyn o rk,)(i) = I y~(i) - (snyn o rk,)(i)l. 

Thus  (12) holds in this case as well. [ ]  
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